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1. Introduction 
 

In mathematical chemistry, we discuss and predict 

some important properties of a chemical structure by using 

mathematical techniques. Chemical graph theory is a 

branch of mathematical chemistry in which we apply tools 

from graph theory to mathematically model the chemical 

phenomenon. This theory plays a prominent role in the 

fields of chemical sciences. 

Let G  be an n -vertex molecular graph with vertex 

set },,,{=)( 21 nvvvGV   and edge set )(GE . The 

vertices of G  correspond to atoms and an edge between 

two vertices corresponds to the chemical bond between 

these vertices. The hydrogen atoms are often omitted in a 

molecular graph. An edge in )(GE  with end-vertices u  

and v  is denoted by uv . A subgraph H  is said to be a 

spanning subgraph of G  if )(=)( GVHV . A matching 

M  in G  is a subset of )(GE  such that no two edges in 

M  have a commom end-vertex in G . A matching M  

is said to be perfect if each )(GVv  is incident with an 

edge in M . A vertex v  of G  is said to be M

-saturated if an edge of the matching M  is incident on v

; otherwise, v  is said to be M -unsaturated. A path in G  

is said to be an M -alternating path if its edges are 

alternately in M  and MGE \)( . An M -alternating 

path is said to be an M -augmenting path if its initial and 

terminal vertices are M -unsaturated. 

The anti-Kekulé number of a connected graph G , 

denoted as )(Gak , is the smallest number of edges whose 

deletion from G  gives a connected spanning subgraph 

without any Kekulé structure. Clearly, when G  has no 

Kekulé structure then 0=)(Gak . We define 

=)(Gak  when it is not possible to find a connected 

spanning subgraph of G  without any Kekulé structure. 

An edge e  of the graph G  is said to be a fixed single 

edge if it is not possible to find a perfect matching in G  

containing e . 

Perfect matchings correspond to Kekulé structures in 

molecular graphs, which play an important role in analysis 

of the resonance energy and stability of hydro-carbon 

compounds [16]. It is well known that carbon compounds 

without Kekulé structures are unstable. The study of 

Kekulé structures of chemical compounds is very important 

as it may explain their physical and chemical properties 

[22]. 

The nanostar dendrimers are part of a new group of 

macromolecules that appear to be photon funnels like 

artificial antennas. These macromolecules and more 

precisely those containing phosphorus are used in the 

formation of nanotubes, micro and macrocapsules, 

nanolatex, coloured glasses, chemical sensors, modified 

electrodes, etc. [1, 10]. Nanostar dendrimers are one of the 

main objects of nanobiotechnology. They possess a well 

defined molecular topology. Their step-wise growth 

follows a mathematical progression. Dendrimers are highly 

ordered branched macromolecules which have attracted 

much theoretical and experimental attention. The 

topological study of these macromolecules is a new subject 

of research [9, 23]. The number of Kekulé structures and 

some energy bounds of nanostar dendrimers were studied in 

[2,4]. 

Veljan and Vukičević [24] showed that the anti-Kekulé 

numbers of the infinite triangular, rectangular and 

hexagonal grids are 9, 6 and 4, respectively. Recently, the 

anti-Kekulé number of some nanotubes and nanocones 

were studied in [19]. 

In this paper, we compute Kekulé structures and 

anti-Kekulé number of some families of nanostar 

dendrimers. If the nanostar dendrimer has no Kekulé 

structure then we find the size of a maximum matching in it 
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(Section 3). The nullity of these nanostar dendrimers is also 

studied (Section 4). Furthermore, we compute the first and 

fourth version of atom-bond connectivity index and the first 

and fifth version of geometric-arithmetic index for these 

graphs (Section 5). 

 

 

2. Some infinite families of nanostar  
  dendrimers 
 

In this section, we define four types of nanostar 

dendrimes and explain their generation with the help of 

figures. The first type of nanostar dendrimers ][1 nNS  is 

shown in Fig. 1. The order and size of ][1 nNS  nanostar 

dendrimers are 4429 2  n
 and 50210 2  n

, 

respectively. 

 

 
 

Fig. 1. NS1[n] with n=1 and n=2. The thick edges 

represent a matching. Here, b20 represents a  branch  of  

NS1[n] with 20 vertices. 

 

 

 The second type of nanostar dendrimers is denoted by 

NS2[n] and is shown in Fig. 2. The order and size of NS2[n]  

are 1202n -108 and 1402n -127, respectively. 

 

 
 

Fig. 2. NS2[n] with n=1 and n=2. The thick  

edges represent a matching. 

 

 

We denote the molecular graph of polyphenylene 

nanostar dendrimers by NS3[n] shown in Fig. 3. The order 

and size of NS3[n]  are 152n+3 - 95 and 352n+2 - 112, 

respectively. 

 
 

Fig. 3. NS3[n]  with n=1 and 2. NS3[n]  is also  

known as Polyphenylene dendrimer. The thick edges  

represent a matching. 

 

 

The fourth type of nanostar dendrimers NS4[n]  is 

shown in Fig. 4. Since NS4[n] is unicyclic graph, its order 

and size are same and are equal to 323 1  n
. 

 

 
 

 
Fig. 4. NS4[n] , with n = 1,2,3. The thick edges  

represent a matching. 

 

 

Ashrafi and Mirzargar [1] studied the PI, Szeged and 

edge Szeged indices of NS4[n]  nanostar dendrimers. 

Recently, in [3, 18] some researchers investigated m-order 

connectivity indices of NS3[n] nanostar dendrimers. The 

atom-bond connectivity index and geometric-arithmetic 

index of nanostar dendrimers NS2[n] and some polyomino 

chains were studied in [17]. Rostami and Shabanian [21] 

studied the first kind of geometric-arithmetic index of the 

nanostar dendrimers NS1[n] and NS2[n]. Recently, Manuel et 

al. [20] studied the total-Szeged index of NS1[n] nanostar 

dendrimers. Ghorbani [12] studied the nullity of an infinite 

class of nanostar dendrimers. 

There are four branches of NS2[n] emerging from two 

central hexagons and at each growth stage each branch 

contains five new hexagons. Since, the structure of this 

graph is symmetric, results obtained from one branch of G 

can be applied to the whole graph. Let M be a perfect 

matching in NS2[n]. There are some observations about 

NS2[n]  nanostars, which will help us in computing the 

number of Kekulé structures in NS2[n]. 

Observation 1. For each positive integer n , ][2 nNS  

has possibly following four types of hexagons: 

(i).  Type (a): The hexagons with exactly one vertex of 

degree 3 . Such a hexagon has degree sequence of the type 
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,3)(2,2,2,2,2 . If the vertex of degree 3  is matched with 

a vertex outside this hexagon under a matching M , then at 

least one vertex of degree 2  will be M -unsaturated. 

Thus, such a matching M  is not perfect. 

(ii).  Type (b): The hexagons with exactly two vertices 

of degree 3 . Such hexagons have degree sequence of the 

form ,3)(2,2,3,2,2 . If one vertex of degree 3  is 

matched with a vertex outside this hexagon under a perfect 

matching M , then the other vertex of degree 3  is also 

matched under M  with a vertex outside this hexagon. 

(iii).  Type (c): The hexagons with exactly three 

vertices of degree 3 . Such hexagons have degree sequence 

of the form ,3)(2,3,2,3,2 . If a vertex of degree 3  is 

matched with a vertex outside this hexagon under a 

matching M , then at least one vertex of this hexagon will 

be M -unsaturated. Thus, such a matching M  is not 

perfect. 

(iv).Type (d): The hexagons with exactly five vertices 

of degree 3  such that it has two vertices of degree 3  

having two distinct neighbours in two distinct hexagons of 

Type (b). Such a hexagon has degree sequence of the type 

,3)(2,3,3,3,3 . If a vertex of degree 3  is matched with a 

vertex outside this hexagon under a matching M , then to 

have all vertices of this hexagon M -saturated, at least 

another vertex of degree 3  will be matched with a vertex 

outside this hexagon.  

(v).  Type-(e): The hexagons with exactly five vertices 

of degree 3  from which exactly four vertices have distinct 

neighbours in four different hexagons of Type-(a). Such a 

hexagon has degree sequence same as the degree sequence 

of a hexagon of Type-(d). To have all vertices of this 

hexagon M saturated, either none or exactly 2  or 4
vertices of degree 3  can be matched with vertices outside 

this hexagon. The later case leads to a contradiction by Case 

(i). 

From Observation 1, we have the following lemma. 

Lemma 2.1  All those edges of ][2 nNS  whose 

end-vertices are in different hexagons are fixed single 

edges. 

Proof. From the structure of ][2 nNS , it is clear that 

there always exists a perfect matching. Let M  be a 

perfect matching in ][2 nNS  and e  be an edge whose 

end-vertices are in different hexagons. We show that e  is 

a fixed single edge. On contrary suppose that Me  . 

Then we consider the following four cases. 

Case 1. One end of e  is in a hexagon of Type (a) and 

other end is in a hexagon of Type (d) or Type (e). By 

Observation 1 (i), we have a contradiction. 

Case 2. One end of e  is in a hexagon of Type (b) and 

other end is in a hexagon of Type (e). By Observation 1 (v), 

at least one vertex of degree 3  of a hexagon of Type (e) is 

matched with a vertex of a Type (a) hexagon. This, 

however, is not possible by Case 1. 

Case 3. One end of e  is in a hexagon of Type (b) and 

other end is in a hexagon of Type (d). Then one can find an 

M -alternating path whose first edge is e  and terminal 

edge is e , such that one end of e  is in a hexagon of 

Type (b) and other end is in a hexagon of Type (e). This is 

again not possible by Case 2. 

Case 4. At least one end of e  is in a hexagon of Type 

(c). By Observation 1 (iii), this is not possible. 

From the Cases 1–4, we find that all the edges with 

end-vertices in different hexagons of ][2 nNS  are fixed 

single edges.  

 

 

3. The Kekulé structures and maximum  
   matchings 
 

In the following, we obtain some important short 

results about the Kekulé structures, maximum matchings 

and the anti-Kekulé number of nanostar dendrimers 

discussed in the previous section. 

Theorem 3.1  The nanostar ][1 nNS  has no 

Kekulé-structure. 

Proof. From Fig. 1, we see that there exists a pair of 

pendent vertices in ][1 nNS  which are adjacent to the 

same vertex. Such a pair of pendent vertices cannot be 

matched simultaneously under one matching. Thus, 

][1 nNS  has no Kekulé structure. 

Theorem 3.2  The anti-Kekulé number of ][1 nNS  is 

0 . 

Proof. As ][1 nNS  has no Kekulé structure, the 

anti-Kekulé number of ][1 nNS  is obviously 0 . 

Theorem 3.3  The size of a maximum matching in 

][1 nNS  is 212 4 n
. 

Proof. For each n , let nM  be the matching in 

][1 nNS  as shown in Fig. 1 with thick edges. For 1=n , 

one can see that there is no 1M -augmenting path in 

[1]1NS . Thus 1M  is a maximum matching and 

212=11|=| 41

1 M . Observe that [2]1NS  is 

obtained from [1]1NS  by connecting four identical 

branches with four pendent vertices of [1]1NS  in the way 

as shown in Fig. 1. Let 2M  be the matching in [2]1NS . 

Then it can be readily seen that there is no 2M

-augmenting path in [2]1NS . As the number of edges of 

2M  in each branch 20B  is 8 , we have 

212=4(8)21)(2|=| 4241

2  M . Similarly, if 

3M  is a maximum matching in [3]1NS  then 

212=8(8)21)(2|=| 4342

3  M . In general, the 
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size of a maximum matching in ][1 nNS  is 212 4 n
.  

Theorem 3.4  The number of Kekulé structures in 

][2 nNS  is equal to 
182252  n

.  

Proof. From the structure of ][2 nNS , we see that all 

vertices of ][2 nNS  lie on vertex-disjoint hexagons. Thus 

a Kekulé structure can be easily obtained. Also, Lemma 2.1 

implies that all the edges whose end-vertices are in different 

hexagons are fixed single edges. Thus, to prove the 

assertion, it is enough to find the Kekulé structures of 

hexagons of ][2 nNS . 

For 1=n , we see that there are 10(2)2  

hexagons in [1]2NS . For 2=n , there are 

)210(22 2  hexagons in ][2 nNS . For 3=n , there 

are )2210(22 32   hexagons in ][2 nNS . 

Generalizing this, we see that there are 

1825=2102 2

1=
  nkn

k
 hexagons in ][2 nNS . 

As each hexagon has exactly two Kekulé structures, there 

are 
182252  n

 Kekulé structures in ][2 nNS .  

Theorem 3.5  The anti-Kekulé number of ][2 nNS  

is  .  

Proof. By Lemma 2.1, all edges whose end-vertices are 

in different hexagons are fixed single edges. Thus, in order 

to find the anti-Kekulé number of ][2 nNS , it is enough to 

remove the Kekulé structures of a single hexagon. 

However, the Kekulé structures of a hexagon can only be 

removed if two consecutive edges of the hexagon are 

deleted. From the structure of ][2 nNS , it is evident that 

deletion of any two edges of a hexagon gives us a 

disconnected subgraph. Therefore, the anti-Kekulé number 

of ][2 nNS  is  . 

Theorem 3.6  The nanostar ][3 nNS  has no 

Kekulé-structure.  

Proof. The proof follows from the fact that the order of 

the nanostar ][3 nNS  is odd.  

Theorem 3.7  The anti-Kekulé number of ][3 nNS  

is 0 .  

Proof. The proof is straightforward from Theorem 3.6.  

Theorem 3.8  The size of a maximum matching in 

][3 nNS  is 48215 2  n
. 

Proof. From the structure of ][3 nNS , it can be 

observed that all vertices of ][3 nNS , except one vertex, 

lie on hexagons. Let M  be a matching in ][3 nNS  

which consists of all vertex-disjoint edges of hexagons. 

Then 

48215=1)952(15
2

1
=1)|])[((|

2

1
|=| 23

3   nnnNSVM

. The matching M  is shown with thick edges in Fig. 3. 

Clearly, M  is a maximum matching.  

Theorem 3.9  The nanostar ][4 nNS  has no 

Kekulé-structure. 

Proof. The proof is similar to the proof of Theorem 3.1.  

Theorem 3.10  The anti-Kekulé number of ][4 nNS  

is 0 .  

Proof. The proof follows from Theorem 3.9.  

Theorem 3.11  The size of a maximum matching in 

][4 nNS  is 12 1 n
 if 2) mod0(n  and 22 1 n

 

otherwise.  

Proof. Let M  be the matching in ][4 nNS  shown 

by thick edges in Fig. 4. One can observe that there is no 

M -augmenting path in ][4 nNS , for each 1,2,=n . 

Thus M  is a maximum matching. Now for 1=n , we 

note that 22=6|=| 11 M . For 2=n , we have 

12=10|=| 12 M . For 3=n , we have 

22=18|=| 13 M . For 4=n , we have 

12=33|=| 14 M . Generalizing this, we get  

1

1

2 1 0(mod 2)
| |=

2 2 .

n

n

n
M

otherwise





  



 

 

4. The nullity of nanostar dendrimers 
 

In this section, we calculate the nullity of nanostar 

dendrimers ][1 nNS , ][2 nNS , ][3 nNS  and ][4 nNS . 

First we give some definitions and terminologies. 

The adjacency matrix nnijaGA ][=)(  of a graph 

G  is defined by  

 

)).(,(
0

)(1
= GVvv

otherwise

GEvvif
a ji

ji

ij 


 

 

 

The eigenvalues of the graph G  are the eigenvalues 

of )(GA  and the spectrum of G  is the multiset of 

eigenvalues of G . The nullity of graph G , denoted by 

)(G , is the multiplicity of the eigenvalue zero in the 

spectrum of G . The graph G  is singular if 0=)(G  

and non-singular if 0>)(G . In [8], Collatz and 

Sinogowitz posed the problem of characterizing singular 

graphs. Since then, the theory of nullity of graphs has 

stimulated much research because of its noteworthy 

applications in chemistry. The role of nullity of graphs in 

chemistry was first recognized by Cvetkovic and Gutman 

[5]. The next lemma gives a formula for calculating the 

nullity of some bipartite graphs. 

Lemma 4.1 (Cvetkovic, Gutman)   If a bipartite 

graph G  with 1n  vertices does not contain any cycle 

of length s4 1,2,...)=(s , then mnG 2=)(  , where 
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m  is the size of its maximum matching.  

The following lemma is useful in finding nullity of 

graphs with pendent vertices.  

Lemma 4.2 (Cvetkovic, Gutman)  Let v  be a 

pendant vertex in a graph G  and u  be the vertex 

adjacent to v . Then )(=)( vuGG  , where 

vuG   is the graph obtained from G  by deleting the 

vertices u  and v . 

The nullity of a path and cycle is given in the next 

lemma.  

Lemma 4.3 (Cvetkovic, Gutman)  (i) The 

eigenvalues of the path nP  are of the form )
1

(cos2
n

k
, 

nk ,1,=  . According to this,  





.0

1
=)(

evenisnif

oddisnif
Pn  

(ii) The eigenvalues of the cycle nC  are )
2

(cos2
n

k
, 

1,0,1,= nk  . Thus  



 

.0

4)mod(02
=)(

otherwise

nif
Cn  

Next lemma states that the nullity of a graph is equal to 

the sum of the nullities of its components.  

Lemma 4.4 (Gutman, Borovicanin)  Let 

i

t

i

GG 
1=

= , where iG , for each ti ,1,=  , are 

connected components of G . Then )(=)(
1=

i

t

i

GG   .  

Now, we present some results about the nullity of 

nanostar dendrimers ][1 nNS , ][2 nNS , ][3 nNS  and 

][4 nNS  by using Lemmas 4.1–4.4. 

Theorem 4.1 The nullity of ][1 nNS  is 22 2 n
.  

 

Proof. For 1=n , applying Lemma 4.2 repeatedly on 

[1]1NS , we obtain a subgraph 61

1

1 )2(3= CKH   

such that )(=[1])( 11 HNS  . By Lemma 4.3 and 

Lemma 4.4, we obtain 2223=[1])( 11

1 NS . For 

2=n , again applying Lemma 4.2 repeatedly on [2]1NS , 

we obtain a subgraph 

6

2

1

22

2 )2(12)22(3= CKH   such that 

1 2( [2]) = ( )NS H  . By Lemma 4.3 and Lemma 4.4, we 

obtain 2223=[2])( 22

1 NS . Generalizing this, 

we get 62=1 )2(12)22(3= CKH kn

k

nn

n   

such that 

22=2223=)(=])[( 2

1  nnn

nHnNS  .  

Theorem 4.2 The nullity of ][2 nNS  is 0 .  

Proof. The order of ][2 nNS  is 1082120  n
 and 

from Theorem 3.4 we know that ][2 nNS  has a Kekulé 

structure of size 
2

1082120  n

. Since ][2 nNS  is a 

bipartite graph, using Lemma 4.1, we have 

0=)
2

1082120
2(108)2(120=])[( 2




n
nnNS .  

Theorem 4.3 The nullity of ][3 nNS  is 1 . 

Proof. From Theorem 3.8, the size of a maximum 

matching in ][3 nNS  is 48215 2  n
. Since ][3 nNS  

is a bipartite graph, applying Lemma 4.1 we get 

1=48)22(1595215=])[( 23

3   nnnNS .  

Theorem 4.4 If 2)mod0(n  then 

12=])[( 1

4 nnNS , otherwise 

12=])[( 1

4 nnNS .  

Proof. First note that ][4 nNS  is a bipartite graph. 

When 2)mod0(n , then Theorem 3.11 and Lemma 4.1 

give 

12=1)2(2323=])[( 111

4   nnnnNS . 

Otherwise, we have 

12=2)2(2323=])[( 111

4   nnnnNS .  

 

 

5. Some degree based topological indices of  
   nanostars dendrimers 
 

This section deals with some degree based topological 

indices of nanostar dendrimers. Let H  be a simple 

connected graph with vertex set )(HV  and edge set 

)(HE . Denote by vd  the degree of a vertex )(HVv  

and define vu
H

Nvu dS   )(
= , where 

)}( | )({=)( HEuvHVvuNH  . Introduced by 

Estrada et al. [11], the atom-bond connectivity index  

(ABC-index) is defined by  

.
2

=)(
)( vu

vu

HEuv dd

dd
HABC





         (1) 

 

Recently, Ghorbani et al. [13] introduced the fourth version 

of ABC -index defined by  

 

.
2

=)(
)(

4

vu

vu

HEuv SS

SS
HABC





         (2) 

 

Another well-known connectivity topological 

descriptor is the geometric-arithmetic index ( GA -index) 
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which was introduced by Vukičević and Furtula [25] and is 

defined by  

.
2

=)(
)( vu

vu

HEuv dd

dd
HGA





               (3) 

 

Graovac et al. [14] proposed the fifth version of GA
-index which is defined by  

.
2

=)(
)(

5

vu

vu

HEuv SS

SS
HGA





              (4) 

 

With each edge uv , we associate two pairs ),( vu dd  and 

),( vu SS . The edge partition of ][1 nNS  nanostar 

dendrimers with respect to the degrees of the end-vertices 

of edges and with respect to the sum of degrees of the 

neighbours of end-vertices of edges is given by Table 1 and 

Table 2, respectively. A similar ),( vu dd  and ),( vu SS

-type edge partitions of ][2 nNS , ][3 nNS  and ][4 nNS  

nanostar dendrimers are given by Tables 3-7. 

 

Table 1: ),( vu dd -type edge partition of ][1 nNS . 

 

),( vu dd  Number of edges 

(1,3)  62 2 n
 

(1,4)  22 n
 

(2,2)  62 2 n
 

(2,3)  2829 1  n
 

(2,4)  12 n
 

(3,3)  1027  n
 

(4,4)  n2  

 

Table 2: ),( vu SS -type edge partition of ][1 nNS . 

 

),( vu SS  Number of edges 

(3,6)  42 1 n
 

(3,7)  22 1 n
 

(4,8)  22 n
 

(5,5)  62 2 n
 

(5,7)  122 3 n
 

(6,6)  42 1 n
 

(6,7)  162 3 n
 

(7,7)  627  n
 

(7,8)  12 n
 

(8,8)  n2  
 

 

Table 3: ),( vu SS -type edge partition of NS2[n]. 

 

),( vu SS  Number of edges 

(4,4)  1623 3  n
 

(4,5)  1623 3  n
 

(5,5)  162 3 n
 

(5,7)  4825 3  n
 

(6,8)  82 3 n
 

(7,6)  12  

(7,7)  1 

(7,8)  82 3 n
 

(7,9)  1223 2  n
 

(8,9)  82 3 n
 

(9,9)  82 3 n
 

 

Table 4: ),( vu dd -type edge partition of NS3[n]. 

 

),( vu dd  Number of edges 

(2,2)  4027 3  n
 

(2,3)  32211 2  n
 

(3,3)  44210 2  n
 

(3,4)  4  

 

Table 5: ),( vu SS -type edge partition of NS3[n]n≥3. 

 

),( vu SS  Number of edges 

(4,4)  1623 3  n
 

(4,5)  1623 3  n
 

(5,5)  82 3 n
 

(5,7)  4025 3  n
 

(5,8)  8  

(6,8)  82 3 n
 

(7,8)  82 3 n
 

(7,9)  1223 2  n
 

(8,9)  82 3 n
 

(8,12)  4  

(9,9)  82 3 n
 

 

Table 6: ),( vu dd -type edge partition of NS4[n]. 

 

),( vu dd  Number of edges 

(1,3)  n23  

(2,3)  6  

(3,3)  323  n
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Table 7: ),( vu SS -type edge partition of ][4 nNS , 3n . 

 

),( vu SS  Number of edges 

(5,3)  n23  

(5,9)  123  n
 

(7,6)  6  

(7,9)  3  

(9,9)  623 1  n
 

 

5.1  Results for ABC  and 4ABC -index 

 

Now we compute the ABC  and 4ABC -indices of 

the nanostar dendrimers ][1 nNS , ][2 nNS , ][3 nNS  

and ][4 nNS  using the edge partitions shown in Tables 

1-7. 

Theorem 5.1 The atom-bond connectivity index of 

][1 nNS  is given by  

 

.
3

20
21762)2

3

14
3(2)23

12

19
(12=])[( 1/2

1   nnnNSABC  

 

Proof. Using equation (1), and the edge partition in Table 1, we have 

 

 

1 2 4 2 3 3 2 4 4 2
(2 ) (7 2 10) (2 ) .

8 9 16

n n n      
   

 
 

After simplification, we get the desired result. 

nnnNSABC )2
3

14
3(2)23

12

19
(12=])[( 1/2

1   .
3

20
21762   

The atom-bond connectivity index of ][2 nNS  is calculated by Hayat et al. [17]. In the next theorem, we calculate 

atom-bond connectivity index of ][3 nNS . 

Theorem 5.2 The atom-bond connectivity index of ][3 nNS  is given by  

 

1/2

3

80 88 2
( [ ]) = 50(2 ) (2 ) 15 36 2.

3 3 3

n nABC NS n       

 

Proof. Using equation (1), and the edge partition in Table 4, we have 

 

3 2 2

3

2 2 2 2 3 2 3 3 2
( [ ]) = (7 2 40) (11 2 32) (10 2 44)

4 6 9

n n nABC NS n        
       

3 4 2
(4) .

12

 
  

 
After simplification we get 

1/2

3

80 88 2
( [ ]) = 50(2 ) (2 ) 15 36 2.

3 3 3

n nABC NS n       

Theorem 5.3 The atom-bond connectivity index of ][4 nNS  is given by  

 

2.23232=])[( 11/2

4   nnnNSABC  

 

Proof. Using equation (1) and the edge partition in Table 6, we have 

 

2 2 2 1

1

1 3 2 1 4 2 2 2 2 2 3 2
( [ ]) = (2 6) (2 ) (2 6) (9 2 28)

3 4 4 6

n n n nABC NS n           
       
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.
9

233
3)2(3

6

232
(6)

3

231
)2(3=])[( 4








 nnnNSABC  

 

After simplification we get 

 

223232=])[( 11/2

4   nnnNSABC . 

 

 

Theorem 5.4 The fourth atom-bond connectivity index of ][1 nNS  is given by 

 

 

1 1 2 2 3

4 1

7 8 5 8 2
( [ ]) = (2 4) (2 2) (2 ) (2 6) (2 12)

18 21 16 25 7

n n n n nABC NS n               

1 3 15 11 12 13 7
(2 4) (2 16) (7 2 6) (2 ) (2 ) .

18 42 49 56 32

n n n n n           

 

Proof. Using equation (2) and the edge partition in Table 2, we have 

 

1 1 2 2

4 1

3 6 2 3 7 2 4 8 2 5 5 2
( [ ]) = (2 4) (2 2) (2 ) (2 6)

18 21 32 25

n n n nABC NS n           
     

3 1 35 7 2 6 6 2 6 7 2 7 7 2
(2 12) (2 4) (2 16) (7 2 6)

35 36 42 49

n n n n         
        

1 7 8 2 8 8 2
(2 ) (2 ) .

56 64

n n    
   

 

After simplification we get 

 

1 1 2 2 3

4 1

7 8 5 8 2
( [ ]) = (2 4) (2 2) (2 ) (2 6) (2 12)

18 21 16 25 7

n n n n nABC NS n            

1 3 15 11 12 13 7
(2 4) (2 16) (7 2 6) (2 ) (2 ) .

18 42 49 56 32

n n n n n            

 

Theorem 5.5 The fourth atom-bond connectivity index of ][2 nNS  is given by 

 

3 3 3 3

4 2

3 7 8 10
( [ ]) = (3 2 16) (3 2 16) (2 16) (5 2 48)

8 20 25 35

n n n nABC NS n               

3 3 21 11 12 13 2
(2 8) (12) (1) (2 8) (3 2 12)

4 42 49 56 9

n n n           3 35 16
(2 8) (2 8) .

24 81

n n      

 

Proof. Using equation (2) and the edge partition in Table 3, we have 

3 3 3

4 2

3 3

4 4 2 4 5 2 5 5 2
( [ ]) = (3 2 16) (3 2 16) (2 16)

16 20 25

5 7 2 6 8 2 7 6 2 7 7 2
                          (5 2 48) (2 8) (12) (1)

35 48 42 49

n n n

n n

ABC NS n   

 

     
      

       
      
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After simplification we get 

3 3 3 3

4 2

3 7 8 10
( [ ]) = (3 2 16) (3 2 16) (2 16) (5 2 48)

8 20 25 35

n n n nABC NS n              

3 3 2 31 11 12 13 2 5
(2 8) (12) (1) (2 8) (3 2 12) (2 8)

4 42 49 56 9 24

n n n n             3 16
(2 8) .

81

n   

 

Theorem 5.6 The fourth atom-bond connectivity index of ][3 nNS  is given by 

 

3 3 3 3

4 3

3 7 8 2 11
( [ ]) = (3 2 16) (3 2 16) (2 8) (5 2 40) (8)

8 20 25 7 40

n n n nABC NS n               

3 3 2 3 31 13 2 5 3 16
(2 8) (2 8) (3 2 12) (2 8) (4) (2 8) .

4 56 9 24 16 81

n n n n n                

 

Proof. Using equation (2) and the edge partition in 

 

Table 5, we have 

 

3 3 3

4 3

4 4 2 4 5 2 5 5 2
( [ ]) = (3 2 16) (3 2 16) (2 8)

16 20 25

n n nABC NS n        
      

 

3 3 35 7 2 5 8 2 6 8 2 8 7 2
(5 2 40) (8) (2 8) (2 8)

35 40 48 56

n n n         
       

 

2 3 37 9 2 8 9 2 8 12 2 9 9 2
(3 2 12) (2 8) (4) (2 8) .

63 72 96 81

n n n         
         

After simplification we get 

 

3 3 3 3

4 3

3 7 8 2 11
( [ ]) = (3 2 16) (3 2 16) (2 8) (5 2 40) (8)

8 20 25 7 40

n n n nABC NS n              

3 3 2 3 31 13 2 5 3 16
(2 8) (2 8) (3 2 12) (2 8) (4) (2 8) .

4 56 9 24 16 81

n n n n n                 

 

Theorem 5.7 The fourth atom-bond connectivity index of ][4 nNS  is given by 

 

1 1

4 4

2 4 16 11 2
( [ ]) = (3 2 ) (3 2 ) (3 2 6) (6) (3) .

5 15 81 42 9

n n nABC NS n           

 

Proof. Using equation (2) and the edge partition in Table 7, we have 

 

1

4 4

5 3 2 5 9 2 7 6 2 7 9 2
( [ ]) = (3 2 ) (3 2 ) (6) (3)

15 45 42 63

n nABC NS n        
    

1 9 9 2
(3 2 6) .

81

n  
    

After simplification we get 

3 2 3 37 8 2 7 9 2 8 9 2 9 9 2
(2 8) (3 2 12) (2 8) (2 8) .

56 63 72 81

n n n n          
        
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1 1

4 4

2 4 16 11 2
( [ ]) = (3 2 ) (3 2 ) (3 2 6) (6) (3) .

5 15 81 42 9

n n nABC NS n           

 

5.2 Results for GA  and 5GA -index 

 

Now, we compute the GA  and 5GA -indices of the nanostar dendrimers ][1 nNS , ][2 nNS , ][3 nNS  and 

][4 nNS  using the edge partitions shown in Tables 1-7. 

Theorem 5.8 The geometric-arithmetic index of ][3 nNS  is given by 

1/2

3

88 64 16
( [ ]) = 96(2 ) (2 ) 3 6 3 84.

5 5 7

n nGA NS n      

Proof. Using equation (3) and the edge partition in Table 4, we have 

 

.
43

122
(4)

33

92
44)2(10

32

62
32)2(11

22

42
40)2(7=])[( 223

3











  nnnnNSGA  

After simplification we get 

 

1/2

3

88 64 16
( [ ]) = 96(2 ) (2 ) 3 6 3 84.

5 5 7

n nGA NS n      

Theorem 5.9 The geometric-arithmetic index of ][4 nNS  is given by 

1

4

12
( [ ]) = 3 3(2 ) 3(2 ) 6 3.

5

n nGA NS n       

Proof. Using equation (3) and the edge partition in Table 6, we have 

.
33

92
3)2(3

32

62
(6)

31

32
)2(3=])[( 4








 nnnNSGA  

After simplification we get 

1

4

12
( [ ]) = 3 3(2 ) 3(2 ) 6 3.

5

n nGA NS n       

Theorem 5.10 The fifth geometric-arithmetic index of ][1 nNS  is given by 

 

1 1 2 3

5 1

2 18 21 32 35
( [ ]) =14 2 (2 4) (2 2) (2 ) (2 12)

9 5 6 6

n n n n nGA NS n           
 

3 12 42 2 56
(2 16) (2 ) 16.

13 15

n n    
 

Proof. Using equation (4) and the edge partition in Table 2, we have 

 

1 1 2 2 3

5 1

2 18 2 21 2 32 2 25 2 35
( [ ]) = (2 4) (2 2) (2 ) (2 6) (2 12)

3 6 3 7 4 8 5 5 5 7

n n n n nGA NS n            
    

1 3 12 36 2 42 2 49 2 56 2 64
(2 4) (2 16) (7 2 6) (2 ) (2 ) .

6 6 6 7 7 7 7 8 8 8

n n n n n          
    

 

After simplification we get 

 

1 1 2 3

5 1

2 18 21 32 35
( [ ]) =14 2 (2 4) (2 2) (2 ) (2 12)

9 5 6 6

n n n n nGA NS n           

3 12 42 2 56
(2 16) (2 ) 16.

13 15

n n      
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Theorem 5.11 The fifth geometric-arithmetic index of ][2 nNS  is given by 

 

3 3 3 3

5 2

2 20 35 48 2 42
( [ ]) = 5 2 (3 2 16) (5 2 48) (2 8) (12)

9 6 7 13

n n n nGA NS n             

3 2 32 56 63 2 72
(2 8) (3 2 12) (2 8) 39.

15 8 17

n n n           

 

Proof. Using equation (4) and the edge partition in Table 3, we have 

 

3 3 3 3

5 2

2 16 2 20 2 25 2 35
( [ ]) = (3 2 16) (3 2 16) (2 16) (5 2 48)

4 4 4 5 5 5 5 7

n n n nGA NS n              
   

3 32 40 2 48 2 42 2 49 2 56
(8) (2 8) (12) (1) (2 8)

5 8 8 6 7 6 7 7 7 8

n n       
    

2 3 32 63 2 72 2 81
(3 2 12) (2 8) (2 8) .

7 9 8 9 9 9

n n n       
  

 

 

 

After simplification we get 

 

 

3 3 3 3

5 2

2 20 35 48 2 42
( [ ]) = 5 2 (3 2 16) (5 2 48) (2 8) (12)

9 6 7 13

n n n nGA NS n             

3 2 32 56 63 2 72
(2 8) (3 2 12) (2 8) 39.

15 8 17

n n n           

 

Theorem 5.12 The fifth geometric-arithmetic index of ][3 nNS  is given by 

 

3 3 3 3

5 3

2 20 35 2 40 48
( [ ]) = 5 2 (3 2 16) (5 2 40) (8) (2 8)

9 6 13 7

n n n nGA NS n             

3 2 32 56 63 2 72 96
(2 8) (3 2 12) (2 8) (4) 32.

15 8 17 10

n n n            

 

Proof. Using equation (4) and the edge partition in Table 5, we have 

 

3 3 3 3

5 3

2 16 2 20 2 25 2 35
( [ ]) = (3 2 16) (3 2 16) (2 8) (5 2 40)

4 4 4 5 5 5 5 7

n n n nGA NS n              
   

3 3 2 32 40 2 48 2 56 2 63 2 72
(8) (2 8) (2 8) (3 2 12) (2 8)

5 8 8 6 7 8 7 9 8 9

n n n n            
    

32 96 2 81
(4) (2 8) .

8 12 9 9

n 
   

 

After simplification we get 

3 3 3 3

5 3

2 20 35 2 40 48
( [ ]) = 5 2 (3 2 16) (5 2 40) (8) (2 8)

9 6 13 7

n n n nGA NS n                

3 2 32 56 63 2 72 96
(2 8) (3 2 12) (2 8) (4) 32.

15 8 17 10

n n n           
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Theorem 5.13 The fifth geometric-arithmetic index of  

 

 

][4 nNS  is given by 

1 1

5 4

15 45 2 42 63
( [ ]) = 3 2 (3 2 ) (3 2 ) (6) (3) 6.

4 7 13 8

n n nGA NS n           

 

Proof. Using equation (4) and the edge partition in Table 7, we have 

 

1 1

5 4

2 15 2 45 2 42 2 63 2 81
( [ ]) = (3 2 ) (3 2 ) (6) (3) (3 2 6) .

5 3 5 9 7 6 7 9 9 9

n n nGA NS n         
    

 

 

After simplification we get 

1 1

5 4

15 45 2 42 63
( [ ]) = 3 2 (3 2 ) (3 2 ) (6) (3) 6.

4 7 13 8

n n nGA NS n           

 
6. Conclusion 
 

In this paper, we consider four infinite families of 

nanostar dendrimers ][1 nNS , ][2 nNS , ][3 nNS  and 

][4 nNS . We compute the number of Kekulé structures 

and anti-Kekulé number of these nanostar dendrimers. In 

case, the nanostar dendrimer has no Kekulé structure, we 

give the size of a maximum matching in it. Furthermore, we 

compute the ABC , 4ABC , GA  and 5GA -indices of 

these nanostar dendrimers using the edge partitions shown 

in Tables 1-7. It would be interesting to study some distance 

based topological indices of these families of nanostar 

dendrimers. 
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